A nested parallel multiscale convolution for cerebrovascular segmentation.
Journal:
Medical physics
Published Date:
Oct 31, 2021
Abstract
PURPOSE: Cerebrovascular segmentation in magnetic resonance imaging (MRI) plays an important role in the diagnosis and treatment of cerebrovascular diseases. Many segmentation frameworks based on convolutional neural networks (CNNs) or U-Net-like structures have been proposed for cerebrovascular segmentation. Unfortunately, the segmentation results are still unsatisfactory, particularly in the small/thin cerebrovascular due to the following reasons: (1) the lack of attention to multiscale features in encoder caused by the convolutions with single kernel size; (2) insufficient extraction of shallow and deep-seated features caused by the depth limitation of transmission path between encoder and decoder; (3) insufficient utilization of the extracted features in decoder caused by less attention to multiscale features.