Machine learning to empower electrohydrodynamic processing.

Journal: Materials science & engineering. C, Materials for biological applications
Published Date:

Abstract

Electrohydrodynamic (EHD) processes are promising healthcare fabrication technologies, as evidenced by the number of commercialised and food-and-drug administration (FDA)-approved products produced by these processes. Their ability to produce both rapidly and precisely nano-sized products provides them with a unique set of qualities that cannot be matched by other fabrication technologies. Consequently, this has stimulated the development of EHD processing to tackle other healthcare challenges. However, as with most technologies, time and resources will be needed to realise fully the potential EHD processes can offer. To address this bottleneck, researchers are adopting machine learning (ML), a subset of artificial intelligence, into their workflow. ML has already made ground-breaking advancements in the healthcare sector, and it is anticipated to do the same in the materials domain. Presently, the application of ML in fabrication technologies lags behind other sectors. To that end, this review showcases the progress made by ML for EHD workflows, demonstrating how the latter can benefit greatly from the former. In addition, we provide an introduction to the ML pipeline, to help encourage the use of ML for other EHD researchers. As discussed, the merger of ML with EHD has the potential to expedite novel discoveries and to automate the EHD workflow.

Authors

  • Fanjin Wang
    Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
  • Moe Elbadawi
    UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4DQ, UK. Electronic address: m.elbadawi@qmul.ac.uk.
  • Scheilly Liu Tsilova
    Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
  • Simon Gaisford
    UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address: s.gaisford@ucl.ac.uk.
  • Abdul W Basit
    Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK. Electronic address: a.basit@ucl.ac.uk.
  • Maryam Parhizkar
    Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address: m.parhizkar@ucl.ac.uk.