Probing lncRNA-Protein Interactions: Data Repositories, Models, and Algorithms.

Journal: Frontiers in genetics
Published Date:

Abstract

Identifying lncRNA-protein interactions (LPIs) is vital to understanding various key biological processes. Wet experiments found a few LPIs, but experimental methods are costly and time-consuming. Therefore, computational methods are increasingly exploited to capture LPI candidates. We introduced relevant data repositories, focused on two types of LPI prediction models: network-based methods and machine learning-based methods. Machine learning-based methods contain matrix factorization-based techniques and ensemble learning-based techniques. To detect the performance of computational methods, we compared parts of LPI prediction models on Leave-One-Out cross-validation (LOOCV) and fivefold cross-validation. The results show that SFPEL-LPI obtained the best performance of AUC. Although computational models have efficiently unraveled some LPI candidates, there are many limitations involved. We discussed future directions to further boost LPI predictive performance.

Authors

  • Lihong Peng
    School of Computer Science, Hunan University of Technology, Zhuzhou, China.
  • Fuxing Liu
    School of Computer Science, Hunan University of Technology, Zhuzhou, China.
  • Jialiang Yang
    Department of Sciences, Genesis (Beijing) Co. Ltd., Beijing, China.
  • Xiaojun Liu
    School of Computer Science, Hunan University of Technology, Zhuzhou, China.
  • Yajie Meng
    College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
  • Xiaojun Deng
    School of Computer Science, Hunan University of Technology, Zhuzhou, China.
  • Cheng Peng
    School of Electrical and Mechanical Engineering, Hefei Technology College, Hefei, China.
  • Geng Tian
    Department of Sciences, Genesis (Beijing) Co. Ltd., Beijing, China.
  • Liqian Zhou
    School of Computer Science, Hunan University of Technology, Zhuzhou, China.

Keywords

No keywords available for this article.