Fault Recognition Method Based on Attention Mechanism and the 3D-UNet.

Journal: Computational intelligence and neuroscience
Published Date:

Abstract

Oil and gas reservoirs are of great significance for economic benefits. Faults act as important conduits for transporting hydrocarbons and as essential sealing conditions. The location and morphology of faults reflect changes in the shape of the strata, so fault interpretation of seismic data has been an essential task in oil and gas exploration and development. The traditional fault identification method is time-consuming and inaccurate with large uncertainties. This paper proposed a fault recognition method based on 3D-UNet that added attention mechanisms to a convolutional neural network (CNN). This approach takes advantage of the UNet end-to-end architecture and the attention mechanism to focus on essential areas and suppress irrelevant information, allowing the model to focus on more valuable features. A fault identification network for seismic data was proposed by combining the 3D-UNet architecture with the Squeeze-and-Excitation (SE) attention mechanism. The 3D-UNet architecture comprises two parts: encoding and decoding, and the network architecture realizes end-to-end training. At the same time, SE was used to focus on the advantages of feature channels, further improving the accuracy of the network. The model performance was evaluated using the synthetic dataset provided by Wu. Experimental results show that the proposed model has better prediction performance in terms of accuracy, better recognition continuity, and richer fault detail.

Authors

  • Ting Yu
    Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China.
  • Xin Wang
    Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
  • Tong Jun Chen
    School of Earth and Geoscience, China University of Mining and Technology, Xu'zhou 221000, China.
  • Chang Wei Ding
    School of Computer Science and Technology, China University of Mining and Technology, Xu'zhou 221000, China.