Inhalable Fucoidan Microparticles Combining Two Antitubercular Drugs with Potential Application in Pulmonary Tuberculosis Therapy.

Journal: Polymers
Published Date:

Abstract

The pulmonary delivery of antitubercular drugs is a promising approach to treat lung tuberculosis. This strategy not only allows targeting the infected organ instantly, it can also reduce the systemic adverse effects of the antibiotics. In light of that, this work aimed at producing fucoidan-based inhalable microparticles that are able to associate a combination of two first-line antitubercular drugs in a single formulation. Fucoidan is a polysaccharide composed of chemical units that have been reported to be specifically recognised by alveolar macrophages (the hosts of ). Inhalable fucoidan microparticles were successfully produced, effectively associating isoniazid (97%) and rifabutin (95%) simultaneously. Furthermore, the produced microparticles presented adequate aerodynamic properties for pulmonary delivery with potential to reach the respiratory zone, with a mass median aerodynamic diameter (MMAD) between 3.6⁻3.9 µm. The formulation evidenced no cytotoxic effects on lung epithelial cells (A549), although mild toxicity was observed on macrophage-differentiated THP-1 cells at the highest tested concentration (1 mg/mL). Fucoidan microparticles also exhibited a propensity to be captured by macrophages in a dose-dependent manner, as well as an ability to activate the target cells. Furthermore, drug-loaded microparticles effectively inhibited mycobacterial growth in vitro. Thus, the produced fucoidan microparticles are considered to hold potential as pulmonary delivery systems for the treatment of tuberculosis.

Authors

  • Ludmylla Cunha
    Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal. ludmyllacc@gmail.com.
  • Susana Rodrigues
    Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal. susananasus@gmail.com.
  • Ana M Rosa da Costa
    Algarve Chemistry Research Centre and Department of Chemistry and Pharmacy, University of Algarve, 8005-139 Faro, Portugal. amcosta@ualg.pt.
  • M Leonor Faleiro
    Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal. mfaleiro@ualg.pt.
  • Francesca Buttini
    Food and Drug Department, University of Parma, 43124 Parma, Italy. francesca.buttini@unipr.it.
  • Ana Grenha
    Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal. amgrenha@ualg.pt.

Keywords

No keywords available for this article.