Backpropagation Neural Tree.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

We propose a novel algorithm called Backpropagation Neural Tree (BNeuralT), which is a stochastic computational dendritic tree. BNeuralT takes random repeated inputs through its leaves and imposes dendritic nonlinearities through its internal connections like a biological dendritic tree would do. Considering the dendritic-tree like plausible biological properties, BNeuralT is a single neuron neural tree model with its internal sub-trees resembling dendritic nonlinearities. BNeuralT algorithm produces an ad hoc neural tree which is trained using a stochastic gradient descent optimizer like gradient descent (GD), momentum GD, Nesterov accelerated GD, Adagrad, RMSprop, or Adam. BNeuralT training has two phases, each computed in a depth-first search manner: the forward pass computes neural tree's output in a post-order traversal, while the error backpropagation during the backward pass is performed recursively in a pre-order traversal. A BNeuralT model can be considered a minimal subset of a neural network (NN), meaning it is a "thinned" NN whose complexity is lower than an ordinary NN. Our algorithm produces high-performing and parsimonious models balancing the complexity with descriptive ability on a wide variety of machine learning problems: classification, regression, and pattern recognition.

Authors

  • Varun Ojha
    Department of Computer Science, University of Reading, Reading, UK. Electronic address: v.k.ojha@reading.ac.uk.
  • Giuseppe Nicosia
    Center of System Biology, University of Cambridge, Cambridge, UK; Department of Biomedical & Biotechnological Sciences, University of Catania, Catania, Italy.