Resilient H∞ State Estimation for Discrete-Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event-Triggered Mechanism.
Journal:
IEEE transactions on cybernetics
Published Date:
May 19, 2022
Abstract
In this article, a resilient H approach is put forward to deal with the state estimation problem for a type of discrete-time delayed memristive neural networks (MNNs) subject to stochastic disturbances (SDs) and dynamic event-triggered mechanism (ETM). The dynamic ETM is utilized to mitigate unnecessary resource consumption occurring in the sensor-to-estimator communication channel. To guarantee resilience against possible realization errors, the estimator gain is permitted to undergo some norm-bounded parameter drifts. For the delayed MNNs, our aim is to devise an event-based resilient H estimator that not only resists gain variations and SDs but also ensures the exponential mean-square stability of the resulting estimation error system with a guaranteed disturbance attenuation level. By resorting to the stochastic analysis technique, sufficient conditions are acquired for the expected estimator and, subsequently, estimator gains are obtained via figuring out a convex optimization problem. The validity of the H estimator is finally shown via a numerical example.