Sensitive electrochemical detection of gp120 based on the combination of NBD-556 and gp120.

Journal: Talanta
Published Date:

Abstract

As is known, the employment of molecular imprinting polymer (MIP) as specific sensing materials in sensors, namely MIP-based sensors. In this contribution, we devised a MIP electrochemical sensor for the detection of variable-format conformations protein gp120. The sensor was constructed by using a grapheme-like carbon nanfragment (CNF) and bismuth oxides composites (CNF-Bi) as decoration material, small-molecule entry inhibitor NBD-556 and gp120 conjugates NBD-556@gp120 instead of gp120 as the template, and pyrrole as an electropolymerization monomer. Cyclic voltammetry, differential pulse voltammetry, scanning electron microscopy and transmission electron microscope were used to characterize the preparation process of the sensor. Results showing that, under optimized conditions, the introduction of NBD-556 make the specific recognition and analytical properties of the MIP sensor towards gp120 more efficient. The response currents were proportional to the NBD-556@gp120 concentrations in the range of 0.0002 ng mL to 200 ng mL with the detection limit of 0.0003 ng mL based on S/N = 3. Meanwhile, the NBD-556@gp120 based MIP sensor also shows acceptable stability and reproducibility. When used for the detection of gp120 in human plasma, it also showed good accuracy. This research idea is in great promising for the early diagnosis of HIV-1 virus and can also be extended to the detection of other conformationally unstable proteins.

Authors

  • Ya Ma
    School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
  • Cheng Liu
    Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei 230026, China. Electronic address: chliu81@ustc.edu.cn.
  • Min Wang
    National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
  • Li-Shi Wang
    School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China. Electronic address: wanglsh@scut.edu.cn.

Keywords

No keywords available for this article.