Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: a proof-of-principle study.

Journal: F1000Research
Published Date:

Abstract

Multiple sclerosis has an extremely variable natural course. In most patients, disease starts with a relapsing-remitting (RR) phase, which proceeds to a secondary progressive (SP) form. The duration of the RR phase is hard to predict, and to date predictions on the rate of disease progression remain suboptimal. This limits the opportunity to tailor therapy on an individual patient's prognosis, in spite of the choice of several therapeutic options. Approaches to improve clinical decisions, such as collective intelligence of human groups and machine learning algorithms are widely investigated. Medical students and a machine learning algorithm predicted the course of disease on the basis of randomly chosen clinical records of patients that attended at the Multiple Sclerosis service of Sant'Andrea hospital in Rome. A significant improvement of predictive ability was obtained when predictions were combined with a weight that depends on the consistence of human (or algorithm) forecasts on a given clinical record. In this work we present proof-of-principle that human-machine hybrid predictions yield better prognoses than machine learning algorithms or groups of humans alone. To strengthen and generalize this preliminary result, we propose a crowdsourcing initiative to collect prognoses by physicians on an expanded set of patients.

Authors

  • Andrea Tacchella
    Institute for Complex Systems, National Research Council - UOS Sapienza, Rome, 00185, Italy.
  • Silvia Romano
    Center for Experimental Neurological Therapies (CENTERS), Dept. of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, 00189, Italy.
  • Michela Ferraldeschi
    Center for Experimental Neurological Therapies (CENTERS), Dept. of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, 00189, Italy.
  • Marco Salvetti
    Center for Experimental Neurological Therapies (CENTERS), Dept. of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, 00189, Italy.
  • Andrea Zaccaria
    Institute for Complex Systems, National Research Council - UOS Sapienza, Rome, 00185, Italy.
  • Andrea Crisanti
    Department of Physics, Sapienza University of Rome, Rome, 00185, Italy.
  • Francesca Grassi
    Institute Pasteur-Cenci Bolognetti Foundation, Dept. Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy.

Keywords

No keywords available for this article.