Improved Stability Criteria for Discrete-Time Delayed Neural Networks via Novel Lyapunov-Krasovskii Functionals.
Journal:
IEEE transactions on cybernetics
Published Date:
Oct 17, 2022
Abstract
This article investigates the stability problem for discrete-time neural networks with a time-varying delay by focusing on developing new Lyapunov-Krasovskii (L-K) functionals. A novel L-K functional is deliberately tailored from two aspects: 1) the quadratic term and 2) the single-summation term. When the variation of the discrete-time delay is further considered, the constant matrix involved in the quadratic term is extended to be a delay-dependent one. All these innovations make a contribution to a quadratic function with respect to the delay from the forward differences of L-K functionals. Consequently, tractable stability criteria are derived that are shown to be more relaxed than existing results via numerical examples.