Practical Prescribed Time Control of Euler-Lagrange Systems With Partial/Full State Constraints: A Settling Time Regulator-Based Approach.
Journal:
IEEE transactions on cybernetics
Published Date:
Nov 18, 2022
Abstract
Many important engineering applications involve control design for Euler-Lagrange (EL) systems. In this article, the practical prescribed time tracking control problem of EL systems is investigated under partial or full state constraints. A settling time regulator is introduced to construct a novel performance function, with which a new neural adaptive control scheme is developed to achieve pregiven tracking precision within the prescribed time. With the specific system transformation techniques, the problem of state constraints is transformed into the boundedness of new variables. The salient feature of the proposed control methods lies in the fact that not only the settling time and tracking precision are at the user's disposal but also both partial state and full state constraints can be accommodated concurrently without the need for changing the control structure. The effectiveness of this approach is further verified by the simulation results.