Multi-stimuli responsive luminescent azepane-substituted β-diketones and difluoroboron complexes.

Journal: Materials chemistry frontiers
Published Date:

Abstract

Difluoroboron β-diketonate (BFbdk) compounds show environment-sensitive optical properties in solution, aggregation-induced emission (AIE) and multi-stimuli responsive fluorescence switching in the solid state. Here, a series of 4-azepane-substituted β-diketone (bdk) ligands (, , ) and their corresponding difluoroboron dyes (, , ) were synthesized, and various responsive fluorescence properties of the compounds were studied, including solvatochromism, viscochromism, AIE, mechanochromic luminescence (ML) and halochromism. Compared to the β-diketones, the boron complexes exhibited higher extinction coefficients but lower quantum yields, and red-shifted absorption and emission in CHCl. Computational studies showed that intramolecular charge transfer (ICT) dominated rather than π-π* transitions in all the compounds regardless of boron coordination. In solution, all the bdk ligands and boron dyes showed red-shifted emission in more polar solvents and increased fluorescence intensity in more viscous media. Upon aggregation, the emission of the β-diketones was quenched, however, the boronated dyes showed increased emission, indicative of AIE. Solid-state emission properties, ML and halochromism, were investigated on spin cast films. For ML, smearing caused a bathochromic emission shift for , and powder X-ray diffraction (XRD) patterns showed that the "as spun" and thermally annealed states were more crystalline and the smeared state was amorphous. No obvious ML emission shift was observed for or , and the boronated dyes were not mechano-active. Trifluoroacetic acid (TFA) and triethylamine (TEA) vapors were used to study halochromism. Large hypsochromic emission shifts were observed for all the compounds after TFA vapor was applied, and reversible fluorescence switching was achieved using the acid/base pair.

Authors

  • Fang Wang
    Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, China.
  • Christopher A DeRosa
    Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.
  • Margaret L Daly
    Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.
  • Daniel Song
    Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.
  • Cassandra L Fraser
    Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.

Keywords

No keywords available for this article.