Deriving a robust deep-learning model for subcortical brain segmentation by using a large-scale database: Preprocessing, reproducibility, and accuracy of volume estimation.

Journal: NMR in biomedicine
Published Date:

Abstract

Increasing the accuracy and reproducibility of subcortical brain segmentation is advantageous in various related clinical applications. In this study, we derived a segmentation method based on a convolutional neural network (i.e., U-Net) and a large-scale database consisting of 7039 brain T1-weighted MRI data samples. We evaluated the method by using experiments focused on three distinct topics, namely, the necessity of preprocessing steps, cross-institutional and longitudinal reproducibility, and volumetric accuracy. The optimized model, MX_RW-where "MX" is a mix of RW and nonuniform intensity normalization data and "RW" is raw data with basic preprocessing-did not require time-consuming preprocessing steps, such as nonuniform intensity normalization or image registration, for brain MRI before segmentation. Cross-institutional testing revealed that MX_RW (Dice similarity coefficient: 0.809, coefficient of variation: 4.6%, and Pearson's correlation coefficient: 0.979) exhibited a performance comparable with that of FreeSurfer (Dice similarity coefficient: 0.798, coefficient of variation: 5.6%, and Pearson's correlation coefficient: 0.973). The computation time per dataset of MX_RW was generally less than 5 s (even when tested without graphics processing units), which was notably faster than FreeSurfer. Thus, for time-restricted applications, MX_RW represents a competitive alternative to FreeSurfer.

Authors

  • Jenn-Shiuan Weng
    Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
  • Teng-Yi Huang
    Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan.