Synthesis and Characterization of Quantum Dot-Loaded Poly(lactic-co-glycolic) Acid Nanocomposite Fibers by an Electrospinning Process.
Journal:
Journal of nanoscience and nanotechnology
Published Date:
Apr 1, 2017
Abstract
Poly(lactic-co-glycolic) acid (PLGA) is one of the most successfully developed biodegradable polymers. PLGA is a copolymer of polylactic and glycolic acid. In this work, quantum dot (QD)-loaded PLGA nanofibers were fabricated via a simple one-step electrospinning process. The surface morphology of the fibers was characterized by scanning electron microscopy (SEM). It was shown that the PLGA nanofibers had both smooth and rough surfaces with an average fiber diameter of 150 ± 25 nm and 350 ± 60 nm for the PLGA and QD-loaded PLGA nanofibers, respectively. The needle size, applied voltage, and solvent flow rate in the syringe were maintained at 23 G, 20 kV, and 1.5 mL/h, respectively. The SEM analysis showed that nanofibers with a very thin and uniform size were formed and the InP/ZnS QDs were homogeneously loaded into the PLGA nanofiber matrix. The thermal properties of the PLGA-QD nanofibers were explored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The surface chemical structure and functionalities were characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray powder diffraction (XRPD).
Authors
Keywords
No keywords available for this article.