Parametric control of flexible timing through low-dimensional neural manifolds.

Journal: Neuron
Published Date:

Abstract

Biological brains possess an unparalleled ability to adapt behavioral responses to changing stimuli and environments. How neural processes enable this capacity is a fundamental open question. Previous works have identified two candidate mechanisms: a low-dimensional organization of neural activity and a modulation by contextual inputs. We hypothesized that combining the two might facilitate generalization and adaptation in complex tasks. We tested this hypothesis in flexible timing tasks where dynamics play a key role. Examining trained recurrent neural networks, we found that confining the dynamics to a low-dimensional subspace allowed tonic inputs to parametrically control the overall input-output transform, enabling generalization to novel inputs and adaptation to changing conditions. Reverse-engineering and theoretical analyses demonstrated that this parametric control relies on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds while preserving their geometry. Comparisons with data from behaving monkeys confirmed the behavioral and neural signatures of this mechanism.

Authors

  • Manuel Beiran
    Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL University, 75005 Paris, France; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
  • Nicolas Meirhaeghe
    Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
  • Hansem Sohn
    Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Mehrdad Jazayeri
    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: mjaz@mit.edu.
  • Srdjan Ostojic
    Laboratoire de Neurosciences Cognitives, Inserm UMR No. 960, Ecole Normale Supérieure, PSL Research University, 75230 Paris, France.