A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition.

Journal: Mathematical biosciences and engineering : MBE
Published Date:

Abstract

Abnormal gait recognition is important for detecting body part weakness and diagnosing diseases. The abnormal gait hides a considerable amount of information. In order to extract the fine, spatial feature information in the abnormal gait and reduce the computational cost arising from excessive network parameters, this paper proposes a double-channel multiscale depthwise separable convolutional neural network (DCMSDSCNN) for abnormal gait recognition. The method designs a multiscale depthwise feature extraction block (MDB), uses depthwise separable convolution (DSC) instead of standard convolution in the module and introduces the Bottleneck (BK) structure to optimize the MDB. The module achieves the extraction of effective features of abnormal gaits at different scales, and reduces the computational cost of the network. Experimental results show that the gait recognition accuracy is up to 99.60%, while the memory size of the model is reduced 4.21 times than before optimization.

Authors

  • Xiaoguang Liu
    College of Electronic and Information Engineering, Hebei University, Baoding 071002, China. lxg_hbu@163.com.
  • Yubo Wu
    College of Electronic and Information Engineering, Hebei University, Baoding, China.
  • Meng Chen
    Institute of Industrial and Consumer Product Safety, China Academy of Inspection and Quarantine, Beijing, China.
  • Tie Liang
    College of Electronic and Information Engineering, Hebei University, Baoding 071002, China. lanswer@163.com.
  • Fei Han
    Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Xiuling Liu
    Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071000, Hebei, China.