Incorporating spatial dose metrics in machine learning-based normal tissue complication probability (NTCP) models of severe acute dysphagia resulting from head and neck radiotherapy.

Journal: Clinical and translational radiation oncology
Published Date:

Abstract

Severe acute dysphagia commonly results from head and neck radiotherapy (RT). A model enabling prediction of severity of acute dysphagia for individual patients could guide clinical decision-making. Statistical associations between RT dose distributions and dysphagia could inform RT planning protocols aiming to reduce the incidence of severe dysphagia. We aimed to establish such a model and associations incorporating spatial dose metrics. Models of severe acute dysphagia were developed using pharyngeal mucosa (PM) RT dose (dose-volume and spatial dose metrics) and clinical data. Penalized logistic regression (PLR), support vector classification and random forest classification (RFC) models were generated and internally (173 patients) and externally (90 patients) validated. These were compared using area under the receiver operating characteristic curve (AUC) to assess performance. Associations between treatment features and dysphagia were explored using RFC models. The PLR model using dose-volume metrics (PLR) performed as well as the more complex models and had very good discrimination (AUC = 0.82) on external validation. The features with the highest RFC importance values were the volume, length and circumference of PM receiving 1 Gy/fraction and higher. The volumes of PM receiving 1 Gy/fraction or higher should be minimized to reduce the incidence of severe acute dysphagia.

Authors

  • Jamie Dean
    Joint Department of Physics at the Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK.
  • Kee Wong
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Hiram Gay
    Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
  • Liam Welsh
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Ann-Britt Jones
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Ulricke Schick
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Jung Hun Oh
    Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Aditya Apte
    Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Kate Newbold
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Shreerang Bhide
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Kevin Harrington
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Joseph Deasy
    Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Christopher Nutting
    Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK.
  • Sarah Gulliford
    Joint Department of Physics at the Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK.

Keywords

No keywords available for this article.