Evaluating solid phase (micro-) extraction tools to analyze freely ionizable and permanently charged cationic surfactants.

Journal: Analytica chimica acta
Published Date:

Abstract

Working with and analysis of cationic surfactants can be problematic since aqueous concentrations are difficult to control, both when taking environmental aqueous samples as well as performing laboratory work with spiked concentrations. For a selection of 32 amine based cationic surfactants (including C8- to C18-alkylamines, C14-dialkyldimethylammonium, C8-tetraalkylammonium, benzalkonium and pyridinium compounds), the extraction from aqueous samples was studied in detail. Aqueous concentrations were determined using solid phase extraction (SPE; 3 mL/60 mg Oasis WCX-SPE cartridges) with recoveries of ≥80% for 30 compounds, and ≥90% for 16 compounds. Sorption to glassware was evaluated in 120 mL flasks, 40 mL vials and 1.5 mL autosampler vials, using 15 mM NaCl, where the glass binding of simple primary amines and quaternary ammonium compounds increased with alkyl chain length. Sorption to the outside of pipette tips (≤20% of total amount in solution) when sampling aqueous solutions may interfere with accurate measurements. Polyacrylate solid phase microextraction (PA-SPME) fibers with two coating thicknesses (7 and 35 μm) were tested as potential extraction devices. The uptake kinetics, pH-dependence and influence of ionic strength on sorption to PA fibers were studied. Changing medium from 100 mM Na to 10 mM Ca decreases K with one order of magnitude. Results indicate that for PA-SPME neutral amines are absorbed rather than adsorbed, although the exact sorption mechanism remains to be elucidated. Further research remains necessary to establish a definitive applicability domain for PA-SPME. However, results indicate that alkyl chain lengths ≥14 carbon atoms and multiple alkyl chains become problematic. A calibration curve should always be measured together with the samples. In conclusion, it seems that for amine based surfactants PA-SPME does not provide the reliability and reproducibility necessary for precise sorption experiments, specifically for alkyl chain lengths beyond 12 carbon atoms.

Authors

  • Niels Timmer
    Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands.
  • Peter Scherpenisse
    Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands.
  • Joop L M Hermens
    Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands.
  • Steven T J Droge
    Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, Department Freshwater and Marine Ecology, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands. Electronic address: S.T.J.Droge@uva.nl.

Keywords

No keywords available for this article.