Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.

Journal: Radiology. Artificial intelligence
Published Date:

Abstract

Coronary CT angiography is increasingly used for cardiac diagnosis. Dose modulation techniques can reduce radiation dose, but resulting functional images are noisy and challenging for functional analysis. This retrospective study describes and evaluates a deep learning method for denoising functional cardiac imaging, taking advantage of multiphase information in a three-dimensional convolutional neural network. Coronary CT angiograms ( = 566) were used to derive synthetic data for training. Deep learning-based image denoising was compared with unprocessed images and a standard noise reduction algorithm (block-matching and three-dimensional filtering [BM3D]). Noise and signal-to-noise ratio measurements, as well as expert evaluation of image quality, were performed. To validate the use of the denoised images for cardiac quantification, threshold-based segmentation was performed, and results were compared with manual measurements on unprocessed images. Deep learning-based denoised images showed significantly improved noise compared with standard denoising-based images (SD of left ventricular blood pool, 20.3 HU ± 42.5 [SD] vs 33.4 HU ± 39.8 for deep learning-based image denoising vs BM3D; < .0001). Expert evaluations of image quality were significantly higher in deep learning-based denoised images compared with standard denoising. Semiautomatic left ventricular size measurements on deep learning-based denoised images showed excellent correlation with expert quantification on unprocessed images (intraclass correlation coefficient, 0.97). Deep learning-based denoising using a three-dimensional approach resulted in excellent denoising performance and facilitated valid automatic processing of cardiac functional imaging. Cardiac CT Angiography, Deep Learning, Image Denoising © RSNA, 2024.

Authors

  • Veit Sandfort
    From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, Wis 53792-3252 (P.M.G., P.J.P.); and Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (V.S., R.M.S.).
  • Martin J Willemink
    Departments of Radiology (L.D.H., G.M., K.H., M.K., M.J.W., A.M.S., D.F.) and Surgery (M.F.), Stanford University School of Medicine, 300 Pasteur Dr, Room S-072, Stanford, CA 94305-5105.
  • Marina Codari
    1 Unit of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy.
  • Domenico Mastrodicasa
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).
  • Dominik Fleischmann
    Departments of Radiology (L.D.H., G.M., K.H., M.K., M.J.W., A.M.S., D.F.) and Surgery (M.F.), Stanford University School of Medicine, 300 Pasteur Dr, Room S-072, Stanford, CA 94305-5105.