Second opinion machine learning for fast-track pathway assignment in hip and knee replacement surgery: the use of patient-reported outcome measures.
Journal:
BMC medical informatics and decision making
PMID:
39044277
Abstract
BACKGROUND: The frequency of hip and knee arthroplasty surgeries has been rising steadily in recent decades. This trend is attributed to an aging population, leading to increased demands on healthcare systems. Fast Track (FT) surgical protocols, perioperative procedures designed to expedite patient recovery and early mobilization, have demonstrated efficacy in reducing hospital stays, convalescence periods, and associated costs. However, the criteria for selecting patients for FT procedures have not fully capitalized on the available patient data, including patient-reported outcome measures (PROMs).