Radiological characterization of the tailings of an abandoned copper mine using a neural network and geostatistical analysis through the Co-Kriging method.

Journal: Environmental geochemistry and health
PMID:

Abstract

The radiological characterization of soil contaminated with natural radionuclides enables the classification of the area under investigation, the optimization of laboratory measurements, and informed decision-making on potential site remediation. Neural networks (NN) are emerging as a new candidate for performing these tasks as an alternative to conventional geostatistical tools such as Co-Kriging. This study demonstrates the implementation of a NN for estimating radiological values such as ambient dose equivalent (H*(10)), surface activity and activity concentrations of natural radionuclides present in a waste dump of a Cu mine with a high level of natural radionuclides. The results obtained using a NN were compared with those estimated by Co-Kriging. Both models reproduced field measurements equivalently as a function of spatial coordinates. Similarly, the deviations from the reference concentration values obtained in the output layer of the NN were smaller than the deviations obtained from the multiple regression analysis (MRA), as indicated by the results of the root mean square error. Finally, the method validation showed that the estimation of radiological parameters based on their spatial coordinates faithfully reproduced the affected area. The estimation of the activity concentrations was less accurate for both the NN and MRA; however, both methods gave statistically comparable results for activity concentrations obtained by gamma spectrometry (Student's t-test and Fisher's F-test).

Authors

  • V M Expósito-Suárez
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.
  • J A Suárez-Navarro
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain. ja.suarez@ciemat.es.
  • A Caro
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.
  • M B Sanz
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.
  • G Hernaiz
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.
  • A González-Sanabria
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.
  • M J Suárez-Navarro
    Departamento de Hidráulica, Energía y Medioambiente, E.T.S.I. Caminos, Universidad Politécnica de Madrid (UPM), Canales y Puertos, Profesor Aranguren S/N, 28040, Madrid, Spain.
  • L Jordá-Bordehore
    Departamento de Hidráulica, Energía y Medioambiente, E.T.S.I. Caminos, Universidad Politécnica de Madrid (UPM), Canales y Puertos, Profesor Aranguren S/N, 28040, Madrid, Spain.
  • H Chamorro-Villanueva
    Sociedad Española Para La Defensa del Patrimonio Geológico y Minero (SEDPGYM), C/ Ríos Rosas, 21 28003, Madrid, Spain.
  • M Arlandi
    Túneles y Geomecánica S.L. C/ Calle Alfonso Gómez nº 17, 28037, Madrid, Spain.
  • J F Benavente
    Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040, Madrid, Spain.