Multi-Task ADME/PK prediction at industrial scale: leveraging large and diverse experimental datasets.

Journal: Molecular informatics
Published Date:

Abstract

ADME (Absorption, Distribution, Metabolism, Excretion) properties are key parameters to judge whether a drug candidate exhibits a desired pharmacokinetic (PK) profile. In this study, we tested multi-task machine learning (ML) models to predict ADME and animal PK endpoints trained on in-house data generated at Boehringer Ingelheim. Models were evaluated both at the design stage of a compound (i. e., no experimental data of test compounds available) and at testing stage when a particular assay would be conducted (i. e., experimental data of earlier conducted assays may be available). Using realistic time-splits, we found a clear benefit in performance of multi-task graph-based neural network models over single-task model, which was even stronger when experimental data of earlier assays is available. In an attempt to explain the success of multi-task models, we found that especially endpoints with the largest numbers of data points (physicochemical endpoints, clearance in microsomes) are responsible for increased predictivity in more complex ADME and PK endpoints. In summary, our study provides insight into how data for multiple ADME/PK endpoints in a pharmaceutical company can be best leveraged to optimize predictivity of ML models.

Authors

  • Moritz Walter
    Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
  • Jens M Borghardt
    Drug Discovery Sciences Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.
  • Lina Humbeck
    Medicinal Chemistry Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany.
  • Miha Škalič
    Computational Biophysics Laboratory, Universitat Pompeu Fabra , Parc de Recerca Biomèdica de Barcelona, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain.