Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein-ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that constructs ligand-receptor graphs based on atom proximity and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks. We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score prediction tasks. Graph networks generalize better than fingerprint-based models and perform strongly for the docking score prediction task. Overall, MPNNs with proximity graph data structures augment the prediction of ligand-receptor complex properties when ligand-receptor data are available.

Authors

  • Zachary J Gale-Day
    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States.
  • Laura Shub
    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States.
  • Kangway V Chuang
    Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Institute for Neurodegenerative Diseases and Bakar Institute for Computational Health Sciences , University of California-San Francisco , 675 Nelson Rising Lane , San Francisco , California 94158 , United States.
  • Michael J Keiser
    Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Institute for Neurodegenerative Diseases and Bakar Institute for Computational Health Sciences , University of California-San Francisco , 675 Nelson Rising Lane , San Francisco , California 94158 , United States.