HGCTNet: Handcrafted Feature-Guided CNN and Transformer Network for Wearable Cuffless Blood Pressure Measurement.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Biosignals collected by wearable devices, such as electrocardiogram and photoplethysmogram, exhibit redundancy and global temporal dependencies, posing a challenge in extracting discriminative features for blood pressure (BP) estimation. To address this challenge, we propose HGCTNet, a handcrafted feature-guided CNN and transformer network for cuffless BP measurement based on wearable devices. By leveraging convolutional operations and self-attention mechanisms, we design a CNN-Transformer hybrid architecture to learn features from biosignals that capture both local information and global temporal dependencies. Then, we introduce a handcrafted feature-guided attention module that utilizes handcrafted features extracted from biosignals as query vectors to eliminate redundant information within the learned features. Finally, we design a feature fusion module that integrates the learned features, handcrafted features, and demographics to enhance model performance. We validate our approach using two large wearable BP datasets: the CAS-BP dataset and the Aurora-BP dataset. Experimental results demonstrate that HGCTNet achieves an estimation error of 0.9 ± 6.5 mmHg for diastolic BP (DBP) and 0.7 ± 8.3 mmHg for systolic BP (SBP) on the CAS-BP dataset. On the Aurora-BP dataset, the corresponding errors are -0.4 ± 7.0 mmHg for DBP and -0.4 ± 8.6 mmHg for SBP. Compared to the current state-of-the-art approaches, HGCTNet reduces the mean absolute error of SBP estimation by 10.68% on the CAS-BP dataset and 9.84% on the Aurora-BP dataset. These results highlight the potential of HGCTNet in improving the performance of wearable cuffless BP measurements.

Authors

  • Zeng-Ding Liu
    Key Laboratory for Health Informatics of the Chinese Academy of Sciences, Shenzhen Institutes of advanced technology, Shenzhen, China.
  • Ye Li
    Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China.
  • Yuan-Ting Zhang
  • Jia Zeng
    Center for Computational Biomedicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA, Department of Public Health Science, Medical University of South Carolina, 135 Cannon Street, Suite 303, Charleston, SC 29425, USA and Department of Investigational Cancer Therapeutics, Institute for Personalized Cancer Therapy, UT-MD Anderson Cancer Center, 1400 Holcombe Blvd., FC8.3044, Houston, TX 77030, USA.
  • Zu-Xian Chen
  • Ji-Kui Liu
  • Fen Miao