Prediction of Occult Hemorrhage in the Lower Body Negative Pressure Model: Initial Validation of Machine Learning Approaches.
Journal:
Military medicine
Published Date:
Jul 3, 2024
Abstract
INTRODUCTION: Detection of occult hemorrhage (OH) before progression to clinically apparent changes in vital signs remains an important clinical problem in managing trauma patients. The resource-intensiveness associated with continuous clinical patient monitoring and rescue from frank shock makes accurate early detection and prediction with noninvasive measurement technology a desirable innovation. Despite significant efforts directed toward the development of innovative noninvasive diagnostics, the implementation and performance of the newest bedside technologies remain inadequate. This poor performance may reflect the limitations of univariate systems based on one sensor in one anatomic location. It is possible that when signals are measured with multiple modalities in multiple locations, the resulting multivariate anatomic and temporal patterns of measured signals may provide additional discriminative power over single technology univariate measurements. We evaluated the potential superiority of multivariate methods over univariate methods. Additionally, we utilized machine learning-based models to compare the performance of noninvasive-only to noninvasive-plus-invasive measurements in predicting the onset of OH.