Versatile Graph Neural Networks Toward Intuitive Human Activity Understanding.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Benefiting from the advanced human visual system, humans naturally classify activities and predict motions in a short time. However, most existing computer vision studies consider those two tasks separately, resulting in an insufficient understanding of human actions. Moreover, the effects of view variations remain challenging for most existing skeleton-based methods, and the existing graph operators cannot fully explore multiscale relationship. In this article, a versatile graph-based model (Vers-GNN) is proposed to deal with those two tasks simultaneously. First, a skeleton representation self-regulated scheme is proposed. It is among the first trials that successfully integrate the idea of view adaptation into a graph-based human activity analysis system. Next, several novel graph operators are proposed to model the positional relationships and learn the abstract dynamics between different human joints and parts. Finally, a practical multitask learning framework and a multiobjective self-supervised learning scheme are proposed to promote both the tasks. The comparative experimental results show that Vers-GNN outperforms the recent state-of-the-art methods for both the tasks, with the to date highest recognition accuracies on the datasets of NTU RGB + D (CV: 97.2%), UWA3D (88.7%), and CMU (1000 ms: 1.13).

Authors

  • Jiahui Yu
    The Center of Gastrointestinal and Minimally Invasive Surgery, Chengdu Third People's Hospital, Southwest Jiaotong University, Chengdu, China.
  • Yingke Xu
    Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China. Electronic address: yingkexu@zju.edu.cn.
  • Hang Chen
    Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China; and.
  • Zhaojie Ju
    School of Computing, University of Portsmouth, Portsmouth, Hampshire PO1 3HE, UK.