Studying Privacy Aspects of Learned Knowledge Bases in the Context of Synthetic and Medical Data.
Journal:
Studies in health technology and informatics
PMID:
39234730
Abstract
INTRODUCTION: Retrieving comprehensible rule-based knowledge from medical data by machine learning is a beneficial task, e.g., for automating the process of creating a decision support system. While this has recently been studied by means of exception-tolerant hierarchical knowledge bases (i.e., knowledge bases, where rule-based knowledge is represented on several levels of abstraction), privacy concerns have not been addressed extensively in this context yet. However, privacy plays an important role, especially for medical applications.