Long-term trend forecast of chlorophyll-a concentration over eutrophic lakes based on time series decomposition and deep learning algorithm.

Journal: The Science of the total environment
PMID:

Abstract

Long-term trend forecast of chlorophyll-a concentration (Chla) holds significant implications for eutrophication management and pollution control planning on lakes, especially under the background of climate change. However, it is a challenging task due to the mixture of trend, seasonal and residual components in time series and the nonlinear relationships between Chla and the hydro-environmental factors. Here we developed a hybrid approach for long-term trend forecast of Chla in lakes, taking the Lake Taihu as an instantiation case, by the integration of Seasonal and Trend decomposition using Loess (STL), wavelet coherence, and Convolutional Neural Network with Bidirectional Long Short-Term Memory (CNN-BiLSTM). The results showed that long-term trends of Chla and the hydro-environmental factors could be effectively separated from the seasonal and residual terms by STL method, thereby enhancing the characterization of long-term variation. The resonance pattern and time lag between Chla and the hydro-environmental factors in the time-frequency domain were accurately identified by wavelet coherence. Chla responded quickly to variations in TP, but showed a time lag response to variations in WT in Lake Taihu. The forecasting method using multivariate and CNN-BiLSTM largely outperformed the other methods for Lake Taihu with regards to R, RMSE, IOA and peak capture capability, owning to the combination of CNN for extracting local features and the integration of bidirectional propagation mechanism for the acquisition of higher-level features. The proposed hybrid deep learning approach offers an effective solution for the long-term trend forecast of algal blooms in eutrophic lakes and is capable of addressing the complex attributes of hydro-environmental data.

Authors

  • Cheng Chen
    Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, China.
  • Mingtao Hu
    Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
  • Qiuwen Chen
    CEER Nanjing Hydraulic Research Institute, Hujuguan 34, Nanjing, 210029, China. qwchen@nhri.cn.
  • Jianyun Zhang
    National Center for Stomatology, Beijing, China.
  • Tao Feng
    School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica Hefei 230012 People's Republic of China tfeng@mail.scuec.edu.cn wanggk@ahtcm.edu.cn.
  • Zhen Cui