Automated Cerebrovascular Segmentation and Visualization of Intracranial Time-of-Flight Magnetic Resonance Angiography Based on Deep Learning.

Journal: Journal of imaging informatics in medicine
PMID:

Abstract

Time-of-flight magnetic resonance angiography (TOF-MRA) is a non-contrast technique used to visualize neurovascular. However, manual reconstruction of the volume render (VR) by radiologists is time-consuming and labor-intensive. Deep learning-based (DL-based) vessel segmentation technology may provide intelligent automation workflow. To evaluate the image quality of DL vessel segmentation for automatically acquiring intracranial arteries in TOF-MRA. A total of 394 TOF-MRA scans were selected, which included cerebral vascular health, aneurysms, or stenoses. Both our proposed method and two state-of-the-art DL methods are evaluated on external datasets for generalization ability. For qualitative assessment, two experienced clinical radiologists evaluated the image quality of cerebrovascular diagnostic and visualization (scoring 0-5 as unacceptable to excellent) obtained by manual VR reconstruction or automatic convolutional neural network (CNN) segmentation. The proposed CNN outperforms the other two DL-based methods in clinical scoring on external datasets, and its visualization was evaluated by readers as having the appearance of the radiologists' manual reconstructions. Scoring of proposed CNN and VR of intracranial arteries demonstrated good to excellent agreement with no significant differences (median, 5.0 and 5.0, P ≥ 12) at healthy-type scans. All proposed CNN image quality were considered to have adequate diagnostic quality (median scores > 2). Quantitative analysis demonstrated a superior dice similarity coefficient of cerebrovascular overlap (training sets and validation sets; 0.947 and 0.927). Automatic cerebrovascular segmentation using DL is feasible and the image quality in terms of vessel integrity, collateral circulation and lesion morphology is comparable to expert manual VR without significant differences.

Authors

  • Yuqin Min
    Institute for Medical Imaging Technology, Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.889, Shuang Ding Road, Shanghai, 201801, China.
  • Jing Li
    Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
  • Shouqiang Jia
    Jinan People's Hospital affiliated to Shandong First Medical University, Shandong, China.
  • Yuehua Li
    From the Institute of Diagnostic and Interventional Radiology (Y.L., M.Y., X.D., J.Z.) and Department of Cardiology (Z.L., C.S.), Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China 200233; Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China (Y.W.); and Department of Radiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (B.L.).
  • Shengdong Nie
    School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China.