Unbiased identification of risk factors for invasive Escherichia coli disease using machine learning.
Journal:
BMC infectious diseases
PMID:
39118021
Abstract
BACKGROUND: Invasive Escherichia coli disease (IED), also known as invasive extraintestinal pathogenic E. coli disease, is a leading cause of sepsis and bacteremia in older adults that can result in hospitalization and sometimes death and is frequently associated with antimicrobial resistance. Moreover, certain patient characteristics may increase the risk of developing IED. This study aimed to validate a machine learning approach for the unbiased identification of potential risk factors that correlate with an increased risk for IED.