AI-driven convolutional neural networks for accurate identification of yellow fever vectors.

Journal: Parasites & vectors
PMID:

Abstract

BACKGROUND: Identifying mosquito vectors is crucial for controlling diseases. Automated identification studies using the convolutional neural network (CNN) have been conducted for some urban mosquito vectors but not yet for sylvatic mosquito vectors that transmit the yellow fever. We evaluated the ability of the AlexNet CNN to identify four mosquito species: Aedes serratus, Aedes scapularis, Haemagogus leucocelaenus and Sabethes albiprivus and whether there is variation in AlexNet's ability to classify mosquitoes based on pictures of four different body regions.

Authors

  • Taís Oliveira de Araújo
    Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brasil.
  • Vinicius Lima de Miranda
    Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brasil.
  • Rodrigo Gurgel-Gonçalves
    Graduate Program in Tropical Medicine, Center for Tropical Medicine, Faculty of Medicine, University of Brasília-UnB, Brasília 70904-970, Brazil.