Early warning of trends in commercial wildlife trade through novel machine-learning analysis of patent filing.

Journal: Nature communications
PMID:

Abstract

Unsustainable wildlife trade imperils thousands of species, but efforts to identify and reduce these threats are hampered by rapidly evolving commercial markets. Businesses trading wildlife-derived products innovate to remain competitive, and the patents they file to protect their innovations also provide an early-warning of market shifts. Here, we develop a novel machine-learning approach to analyse patent-filing trends and apply it to patents filed from 1970-2020 related to six traded taxa that vary in trade legality, threat level, and use type: rhinoceroses, pangolins, bears, sturgeon, horseshoe crabs, and caterpillar fungus. We found 27,308 patents, showing 130% per-year increases, compared to a background rate of 104%. Innovation led to diversification, including new fertilizer products using illegal-to-trade rhinoceros horn, and novel farming methods for pangolins. Stricter regulation did not generally correlate with reduced patenting. Patents reveal how wildlife-related businesses predict, adapt to, and create market shifts, providing data to underpin proactive wildlife-trade management approaches.

Authors

  • A Hinsley
    Department of Biology, University of Oxford, Oxford, UK. amy.hinsley@biology.ox.ac.uk.
  • D W S Challender
    Department of Biology, University of Oxford, Oxford, UK.
  • S Masters
    Naturalis Biodiversity Centre, Leiden, The Netherlands.
  • D W Macdonald
    Department of Biology, University of Oxford, Oxford, UK.
  • E J Milner-Gulland
    Department of Biology, University of Oxford, Oxford, UK.
  • J Fraser
    Saïd Business School, University of Oxford, Oxford, UK.
  • J Wright
    Department of Radiology (J.W.), Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington.