Development and validation of a machine-learning model for predicting postoperative pneumonia in aneurysmal subarachnoid hemorrhage.

Journal: Neurosurgical review
Published Date:

Abstract

Pneumonia is a common postoperative complication in patients with aneurysmal subarachnoid hemorrhage (aSAH), which is associated with poor prognosis and increased mortality. The aim of this study was to develop a predictive model for postoperative pneumonia (POP) in patients with aSAH. A retrospective analysis was conducted on 308 patients with aSAH who underwent surgery at the Neurosurgery Department of the First Affiliated Hospital of Soochow University. Univariate and multivariate logistic regression and lasso regression analysis were used to analyze the risk factors for POP. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the constructed model. Finally, the effectiveness of modeling these six variables in different machine learning methods was investigated. In our patient cohort, 23.4% (n = 72/308) of patients experienced POP. Univariate, multivariate logistic regression analysis and lasso regression analysis revealed age, Hunt-Hess grade, mechanical ventilation, leukocyte count, lymphocyte count, and platelet count as independent risk factors for POP. Subsequently, these six factors were used to build the final model. We found that age, Hunt-Hess grade, mechanical ventilation, leukocyte count, lymphocyte count, and platelet count were independent risk factors for POP in patients with aSAH. Through validation and comparison with other studies and machine learning models, our novel predictive model has demonstrated high efficacy in effectively predicting the likelihood of pneumonia during the hospitalization of aSAH patients.

Authors

  • Tong Wang
    School of Public Health, Shanxi Medical University, Taiyuan 030000, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030000, China.
  • Jiahui Hao
    Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
  • Jialei Zhou
    Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
  • Gang Chen
    Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Haitao Shen
    Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
  • Qing Sun
    a State Key Laboratory of Food Science and Technology, Jiangnan University , Jiangsu , China.