Advancing clinical MRI exams with artificial intelligence: Japan's contributions and future prospects.

Journal: Japanese journal of radiology
PMID:

Abstract

In this narrative review, we review the applications of artificial intelligence (AI) into clinical magnetic resonance imaging (MRI) exams, with a particular focus on Japan's contributions to this field. In the first part of the review, we introduce the various applications of AI in optimizing different aspects of the MRI process, including scan protocols, patient preparation, image acquisition, image reconstruction, and postprocessing techniques. Additionally, we examine AI's growing influence in clinical decision-making, particularly in areas such as segmentation, radiation therapy planning, and reporting assistance. By emphasizing studies conducted in Japan, we highlight the nation's contributions to the advancement of AI in MRI. In the latter part of the review, we highlight the characteristics that make Japan a unique environment for the development and implementation of AI in MRI examinations. Japan's healthcare landscape is distinguished by several key factors that collectively create a fertile ground for AI research and development. Notably, Japan boasts one of the highest densities of MRI scanners per capita globally, ensuring widespread access to the exam. Japan's national health insurance system plays a pivotal role by providing MRI scans to all citizens irrespective of socioeconomic status, which facilitates the collection of inclusive and unbiased imaging data across a diverse population. Japan's extensive health screening programs, coupled with collaborative research initiatives like the Japan Medical Imaging Database (J-MID), enable the aggregation and sharing of large, high-quality datasets. With its technological expertise and healthcare infrastructure, Japan is well-positioned to make meaningful contributions to the MRI-AI domain. The collaborative efforts of researchers, clinicians, and technology experts, including those in Japan, will continue to advance the future of AI in clinical MRI, potentially leading to improvements in patient care and healthcare efficiency.

Authors

  • Shohei Fujita
    Department of Radiology, Juntendo University School of Medicine.
  • Yasutaka Fushimi
    Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University.
  • Rintaro Ito
    Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
  • Yusuke Matsui
    Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
  • Fuminari Tatsugami
    Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
  • Tomoyuki Fujioka
    Department of Diagnostic Radiology, Tokyo Medical and Dental University Hospital, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8501, Japan.
  • Daiju Ueda
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. ai.labo.ocu@gmail.com.
  • Noriyuki Fujima
    Department of Radiology, Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Avenue, Boston, MA, 02118, USA.
  • Kenji Hirata
    Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
  • Takahiro Tsuboyama
    From the Department of Radiology, Osaka University Graduate School of Medicine.
  • Taiki Nozaki
    Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-0016, Japan.
  • Masahiro Yanagawa
    Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
  • Koji Kamagata
  • Mariko Kawamura
    Department of Radiology, Nagoya University Graduate School of Medicine.
  • Akira Yamada
    Department of Radiology, Shinshu University School of Medicine, Japan.
  • Takeshi Nakaura
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.). Electronic address: kff00712@nifty.com.
  • Shinji Naganawa
    Department of Radiology, Nagoya University Graduate School of Medicine.