Machine learning-based predictive model for post-stroke dementia.
Journal:
BMC medical informatics and decision making
PMID:
39529118
Abstract
BACKGROUND: Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.