AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics.

Journal: Journal of chemical theory and computation
Published Date:

Abstract

All-atom molecular simulations offer detailed insights into macromolecular phenomena, but their substantial computational cost hinders the exploration of complex biological processes. We introduce Advanced Machine-learning Atomic Representation Omni-force-field (AMARO), a new neural network potential (NNP) that combines an O(3)-equivariant message-passing neural network architecture, TensorNet, with a coarse-graining map that excludes hydrogen atoms. AMARO demonstrates the feasibility of training coarser NNP, without prior energy terms, to run stable protein dynamics with scalability and generalization capabilities.

Authors

  • Antonio Mirarchi
    Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, Barcelona 08003, Spain.
  • Raúl P Peláez
    Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, Barcelona 08003, Spain.
  • Guillem Simeon
    Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, Barcelona 08003, Spain.
  • Gianni De Fabritiis
    Computational Science Laboratory , Parc de Recerca Biomèdica de Barcelona , Universitat Pompeu Fabra , C Dr Aiguader 88 , Barcelona , 08003 , Spain . Email: gianni.defabritiis@upf.edu.