Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction.

Journal: IEEE transactions on medical imaging
Published Date:

Abstract

Multi-modal magnetic resonance imaging (MRI) plays a crucial role in comprehensive disease diagnosis in clinical medicine. However, acquiring certain modalities, such as T2-weighted images (T2WIs), is time-consuming and prone to be with motion artifacts. It negatively impacts subsequent multi-modal image analysis. To address this issue, we propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions. While image pre-processing is capable of mitigating misalignment, improper parameter selection leads to adverse pre-processing effects, requiring iterative experimentation and adjustment. To overcome this shortage, we employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis, effectively mitigating spatial misalignment effects. Furthermore, we adopt an alternating iteration framework between the reconstruction task and the cross-modal synthesis task to optimize the final results. Then, we prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing, and further illustrate that the improved reconstruction result enhances the synthesis process, whereas the enhanced synthesis result improves the reconstruction process. Finally, experimental results from FastMRI and internal datasets confirm the effectiveness of our method, demonstrating significant improvements in image reconstruction quality even at low sampling rates.

Authors

  • Qi Wang
    Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Zhijie Wen
  • Jun Shi
    School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address: junshi@staff.shu.edu.cn.
  • Qian Wang
    Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China.
  • Dinggang Shen
    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
  • Shihui Ying
    Department of Mathematics, School of Science, Shanghai University, China. Electronic address: shying@shu.edu.cn.