PDG2Seq: Periodic Dynamic Graph to Sequence Model for Traffic Flow Prediction.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Traffic flow prediction is the foundation of intelligent traffic management systems. Current methods prioritize the development of intricate models to capture spatio-temporal correlations, yet they often neglect the exploitation of latent features within traffic flow. Firstly, the correlation among different road nodes exhibits dynamism rather than remaining static. Secondly, traffic data exhibits evident periodicity, yet current research lacks the exploration and utilization of periodic features. Lastly, current models typically rely solely on historical data for modeling, resulting in the limitation of accurately capturing future trend changes in traffic flow. To address these findings, this paper proposes a Periodic Dynamic Graph to Sequence Model (PDG2Seq) for traffic flow prediction. PDG2Seq consists of the Periodic Feature Selection Module (PFSM) and the Periodic Dynamic Graph Convolutional Gated Recurrent Unit (PDCGRU) to further extract the spatio-temporal features of the dynamic real-time traffic. The PFSM extracts learned periodic features using time points as indices, while the PDCGRU leverages the extracted periodic features from the PFSM and dynamic features from traffic flow to generate a Periodic Dynamic Graph for extracting spatio-temporal features. In the decoding phase, PDG2Seq utilizes periodic features corresponding to the prediction target to capture future trend changes, leading to more accurate predictions. Comprehensive experiments conducted on four large-scale datasets substantiate the superiority of PDG2Seq over existing state-of-the-art baselines. Related codes are available at https://github.com/wengwenchao123/PDG2Seq.

Authors

  • Jin Fan
  • Wenchao Weng
    Zhejiang University of Technology, Hangzhou, China. Electronic address: 111124120010@zjut.edu.cn.
  • Qikai Chen
    Hangzhou Dianzi University, Hangzhou, China. Electronic address: 20321310@hdu.edu.cn.
  • Huifeng Wu
    CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
  • Jia Wu