Is artificial intelligence prepared for the 24-h shifts in the ICU?

Journal: Anaesthesia, critical care & pain medicine
PMID:

Abstract

Integrating machine learning (ML) into intensive care units (ICUs) can significantly enhance patient care and operational efficiency. ML algorithms can analyze vast amounts of data from electronic health records, physiological monitoring systems, and other medical devices, providing real-time insights and predictive analytics to assist clinicians in decision-making. ML has shown promising results in predictive modeling for patient outcomes, early detection of sepsis, optimizing ventilator settings, and resource allocation. For instance, predictive algorithms have demonstrated high accuracy in forecasting patient deterioration, enabling timely interventions and reducing mortality rates. Despite these advancements, challenges such as data heterogeneity, integration with existing clinical workflows, and the need for transparency and interpretability of ML models persist. The deployment of ML in ICUs also raises ethical and legal considerations regarding patient privacy and the potential for algorithmic biases. For clinicians interested in the early embracing of AI-driven changes in clinical practice, in this review, we discuss the challenges of integrating AI and ML tools in the ICU environment in several steps and issues: (1) Main categories of ML algorithms; (2) From data enabling to ML development; (3) Decision-support systems that will allow patient stratification, accelerating the foresight of adequate individual care; (4) Improving patient outcomes and healthcare efficiency, with positive society and research implications; (5) Risks and barriers to AI-ML application to the healthcare system, including transparency, privacy, and ethical concerns.

Authors

  • Filipe André Gonzalez
    Intensive Care Department in Hospital Garcia de Orta, Almada, Portugal; ICU in Hospital CUF Tejo, Lisboa, Portugal; Cardiovascular Research Center, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal. Electronic address: filipeandregonzalez@edu.ulisboa.pt.
  • Cristina Santonocito
    Department of Anesthesia and Intensive Care, "Policlinico-San Marco" University Hospital, Catania, Italy. Electronic address: cristina.santonocito@gmail.com.
  • Tomás Lamas
    ICU in Hospital CUF Tejo, Lisboa, Portugal; Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal. Electronic address: tomaslamas2009@gmail.com.
  • Pedro Costa
  • Susana M Vieira
    IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
  • Hugo Alexandre Ferreira
    Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal. Electronic address: hatdferreira@gmail.com.
  • Filippo Sanfilippo
    Department of Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria "Policlinico-San Marco, Catania, Italy.