Research on memory failure prediction based on ensemble learning.
Journal:
PloS one
PMID:
40267123
Abstract
Timely prediction of memory failures is crucial for the stable operation of data centers. However, existing methods often rely on a single classifier, which can lead to inaccurate or unstable predictions. To address this, we propose a new ensemble model for predicting CE-driven memory failures, where failures occur due to a surge of correctable errors (CEs) in memory, causing server downtime. Our model combines several strong-performing classifiers, such as Random Forest, LightGBM, and XGBoost, and assigns different weights to each based on its performance. By optimizing the decision-making process, the model improves prediction accuracy. We validate the model using in-memory data from Alibaba's data center, and the results show an accuracy of over 84%, outperforming existing single and dual-classifier models, further confirming its excellent predictive performance.