A deep learning model for QRS delineation in organized rhythms during in-hospital cardiac arrest.
Journal:
International journal of medical informatics
PMID:
39891984
Abstract
BACKGROUND: Cardiac arrest (CA) is the sudden cessation of heart function, typically resulting in loss of consciousness and cessation of pulse and breathing. The electrocardiogram (ECG) stands as an essential tool extensively utilized by clinicians, during CA treatment. Within the ECG, the QRS complex reflects the depolarization of the ventricles, yielding valuable perspectives on cardiac health and potential irregularities. The delineation of QRS complexes is crucial for obtaining that information, but classical algorithms have not been tested with CA rhythms.