Enhancing furcation involvement classification on panoramic radiographs with vision transformers.
Journal:
BMC oral health
PMID:
39881302
Abstract
BACKGROUND: The severity of furcation involvement (FI) directly affected tooth prognosis and influenced treatment approaches. However, assessing, diagnosing, and treating molars with FI was complicated by anatomical and morphological variations. Cone-beam computed tomography (CBCT) enhanced diagnostic accuracy for detecting FI and measuring furcation defects. Despite its advantages, the high cost and radiation dose associated with CBCT equipment limited its widespread use. The aim of this study was to evaluate the performance of the Vision Transformer (ViT) in comparison with several commonly used traditional deep learning (DL) models for classifying molars with or without FI on panoramic radiographs.