An end-to-end implicit neural representation architecture for medical volume data.
Journal:
PloS one
PMID:
39752347
Abstract
Medical volume data are rapidly increasing, growing from gigabytes to petabytes, which presents significant challenges in organisation, storage, transmission, manipulation, and rendering. To address the challenges, we propose an end-to-end architecture for data compression, leveraging advanced deep learning technologies. This architecture consists of three key modules: downsampling, implicit neural representation (INR), and super-resolution (SR). We employ a trade-off point method to optimise each module's performance and achieve the best balance between high compression rates and reconstruction quality. Experimental results on multi-parametric MRI data demonstrate that our method achieves a high compression rate of up to 97.5% while maintaining superior reconstruction accuracy, with a Peak Signal-to-Noise Ratio (PSNR) of 40.05 dB and Structural Similarity Index (SSIM) of 0.96. This approach significantly reduces GPU memory requirements and processing time, making it a practical solution for handling large medical datasets.