Total-Body PET/CT: A Role of Artificial Intelligence?

Journal: Seminars in nuclear medicine
Published Date:

Abstract

The purpose of this paper is to provide an overview of the cutting-edge applications of artificial intelligence (AI) technology in total-body positron emission tomography/computed tomography (PET/CT) scanning technology and its profound impact on the field of medical imaging. The introduction of total-body PET/CT scanners marked a major breakthrough in medical imaging, as their superior sensitivity and ultralong axial fields of view allowed for high-quality PET images of the entire body to be obtained in a single scan, greatly enhancing the efficiency and accuracy of diagnoses. However, this advancement is accompanied by the challenges of increasing data volumes and data complexity levels, which pose severe challenges for traditional image processing and analysis methods. Given the excellent ability of AI technology to process massive and high-dimensional data, the combination of AI technology and ultrasensitive PET/CT can be considered a complementary match, opening a new path for rapidly improving the efficiency of the PET-based medical diagnosis process. Recently, AI technology has demonstrated extraordinary potential in several key areas related to total-body PET/CT, including radiation dose reductions, dynamic parametric imaging refinements, quantitative analysis accuracy improvements, and significant image quality enhancements. The accelerated adoption of AI in clinical practice is of particular interest and is directly driven by the rapid progress made by AI technologies in terms of interpretability; i.e., the decision-making processes of algorithms and models have become more transparent and understandable. In the future, we believe that AI technology will fundamentally reshape the use of PET/CT, not only playing a more critical role in clinical diagnoses but also facilitating the customization and implementation of personalized healthcare solutions, providing patients with safer, more accurate, and more efficient healthcare experiences.

Authors

  • Qiyang Zhang
    Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
  • Zhenxing Huang
    Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.
  • Yuxi Jin
    The Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
  • Wenbo Li
    Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China.
  • Hairong Zheng
    Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.
  • Dong Liang
    Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.
  • Zhanli Hu
    Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.