Robotic-based Experimental Procedure for Colorimetric Gas Sensing Development.

Journal: Journal of visualized experiments : JoVE
PMID:

Abstract

This paper presents a robot-based experimental program aimed at developing an efficient and fast colorimetric gas sensor. The program employs an automated Design-Build-Test-learning (DBTL) approach, which optimizes the search process iteratively while optimizing multiple recipes for different concentration intervals of the gas. In each iteration, the algorithm generates a batch of recipe suggestions based on various acquisition functions, and with the increase in the number of iterations, the values of weighted objective function for each concentration interval significantly improve. The DBTL method begins with parameter initialization, setting up the hardware and software environment. Baseline tests establish performance standards. Subsequently, the DBTL method designs the following round of optimization based on the proportion of recipes in each round and tests performance iteratively. Performance evaluation compares baseline data to assess the effectiveness of the DBTL method. If the performance improvement does not meet expectations, the method will be performed iteratively; if the objectives are achieved, the experiment concludes. The entire process maximizes system performance through the DBTL iterative optimization process. Compared to the traditional manual developing process, the DBTL method adopted by this experimental process uses multi-objective optimization and various machine learning algorithms. After defining the upper and lower limits of component volume, the DBTL method dynamically optimizes iterative experiments to obtain the optimal ratio with the best performance. This method greatly improves efficiency, reduces costs, and performs more efficiently within the multi-formulation variable space when finding the optimal recipe.

Authors

  • Zechen Li
    School of Automation, Chongqing University, Chongqing, China.
  • Siyuan Xu
    Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
  • Mengyang Cui
    Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences.
  • Jie Deng
    Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W. Congress Pkwy, Chicago, IL 60612, USA. Electronic address: Jie_deng@rush.edu.
  • Jing Jiang
    Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China.
  • Yijian Shi
    College of Electrical and Electronic Engineering, Wenzhou University; shiyijian@wzu.edu.cn.