Deep Learning-Assisted Discovery of Protein Entangling Motifs.
Journal:
Biomacromolecules
Published Date:
Feb 12, 2025
Abstract
Natural topological proteins exhibit unique properties including enhanced stability, controlled quaternary structures, and dynamic switching properties, highlighting topology as a unique dimension in protein engineering. Although artificial design and synthesis of topological proteins have achieved certain success, their diversity and complexity remain rather limited due to the scarcity of available entangling motifs essential for the construction of nontrivial protein topologies. In this work, we developed a deep-learning model to predict the entanglement features of a homodimer based solely on its amino acid sequence via the Gauss linking number matrices. The model achieved a search speed that was dozens of times faster than AlphaFold-Multimer, while maintaining comparable mean squared error. It was used to screen for entangling motifs from the genome of a hyperthermophilic archaeon. We demonstrated the effectiveness of our model by successful wet-lab synthesis of protein catenanes using two candidate entangling motifs. These findings show the great potential of our model for advancing the design and synthesis of novel topological proteins.