Evaluation of an artificial intelligence-based system for real-time high-quality photodocumentation during esophagogastroduodenoscopy.
Journal:
Scientific reports
PMID:
39920187
Abstract
Complete and high-quality photodocumentation in esophagoduodenogastroscopy (EGD) is essential for accurately diagnosing upper gastrointestinal diseases by reducing blind spot rates. Automated Photodocumentation Task (APT), an artificial intelligence-based system for real-time photodocumentation during EGD, was developed to assist endoscopists in focusing more on the observation rather than repetitive capturing tasks. This study aimed to evaluate the completeness and quality of APT's photodocumentation compared to endoscopists. The dataset comprised 37 EGD videos recorded at Seoul National University Hospital between March and June 2023. Virtual endoscopy was conducted by seven endoscopists and APT, capturing 11 anatomical landmarks from the videos. The primary endpoints were the completeness of capturing landmarks and the quality of the images. APT achieved an average accuracy of 98.16% in capturing landmarks. Compared to that of endoscopists, APT demonstrated similar completeness in photodocumentation (87.72% vs. 85.75%, P = .0.258), and the combined photodocumentation of endoscopists and APT reached higher completeness (91.89% vs. 85.75%, P < .0.001). APT captured images with higher mean opinion scores than those of endoscopists (3.88 vs. 3.41, P < .0.001). In conclusion, APT provides clear, high-quality endoscopic images while minimizing blind spots during EGD in real-time.