Physiological Sensor Modality Sensitivity Test for Pain Intensity Classification in Quantitative Sensory Testing.

Journal: Sensors (Basel, Switzerland)
PMID:

Abstract

Chronic pain is prevalent and disproportionately impacts adults with a lower quality of life. Although subjective self-reporting is the "gold standard" for pain assessment, tools are needed to objectively monitor and account for inter-individual differences. This study introduced a novel framework to objectively classify pain intensity levels using physiological signals during Quantitative Sensory Testing sessions. Twenty-four participants participated in the study wearing physiological sensors (blood volume pulse (BVP), galvanic skin response (GSR), electromyography (EMG), respiration rate (RR), skin temperature (ST), and pupillometry). This study employed two analysis plans. Plan 1 utilized a grid search methodology with a 10-fold cross-validation framework to optimize time windows (1-5 s) and machine learning hyperparameters for pain classification tasks. The optimal time windows were identified as 3 s for the pressure session, 2 s for the pinprick session, and 1 s for the cuff session. Analysis Plan 2 implemented a leave-one-out design to evaluate the individual contribution of each sensor modality. By systematically excluding one sensor's features at a time, the performance of these sensor sets was compared to the full model using Wilcoxon signed-rank tests. BVP emerged as a critical sensor, significantly influencing performance in both pinprick and cuff sessions. Conversely, GSR, RR, and pupillometry demonstrated stimulus-specific sensitivity, significantly contributing to the cuff session but with limited influence in other sessions. EMG and ST showed minimal impact across all sessions, suggesting they are non-critical and suitable for reducing sensor redundancy. These findings advance the design of sensor configurations for personalized pain management. Future research will focus on refining sensor integration and addressing stimulus-specific physiological responses.

Authors

  • Wenchao Zhu
  • Yingzi Lin
    Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.