Promoting lignocellulosic biorefinery by machine learning: progress, perspectives and challenges.
Journal:
Bioresource technology
PMID:
40139471
Abstract
The lignocellulosic biorefinery involves pretreatment, enzymatic hydrolysis, mixed sugar fermentation, and optional anaerobic digestion. This pipeline could be effectively implemented through machine learning (ML)-guided process optimization and strain modification rather than experimental or experience-based ones. This review takes a holistic perspective on the entire pipeline, discussing how ML could aid lignocellulosic, while other published work has focused on individual modules within the pipeline. This review also explores the model construction and evaluation strategies and highlights the emerging potential of transfer learning and hybrid ML models to address data insufficiency and improve model interpretability. Furthermore, challenges and future prospects of ML in lignocellulosic biorefinery will be elaborated in this review. Integrating ML into lignocellulosic biorefinery offers a promising pathway towards sustainable and competitive biorefinery systems.