Transfer learning for a tabular-to-image approach: A case study for cardiovascular disease prediction.
Journal:
Journal of biomedical informatics
PMID:
40209918
Abstract
OBJECTIVE: Machine learning (ML) models have been extensively used for tabular data classification but recent works have been developed to transform tabular data into images, aiming to leverage the predictive performance of convolutional neural networks (CNNs). However, most of these approaches fail to convert data with a low number of samples and mixed-type features. This study aims: to evaluate the performance of the tabular-to-image method named low mixed-image generator for tabular data (LM-IGTD); and to assess the effectiveness of transfer learning and fine-tuning for improving predictions on tabular data.